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Type-safe languages improve application safety by eliminating whole classes of vulnerabilities–such as buffer
overflows–by construction. However, this safety sometimes comes with a performance cost. As a result,
many modern type-safe languages provide escape hatches that allow developers to manually bypass them.
The relative value of performance to safety and the degree of performance obtained depends upon the
application context, including user goals and the hardware upon which the application is to be executed. Since
libraries may be used in many different contexts, library developers cannot make safety-performance trade-off
decisions appropriate for all cases. Application developers can tune libraries themselves to increase safety
or performance, but this requires extra effort and makes libraries less reusable. To address this problem, we
present NADER, a Rust development tool that makes applications safer by automatically transforming unsafe
code into equivalent safe code according to developer preferences and application context. In end-to-end
system evaluations in a given context, NADER automatically reintroduces numerous library bounds checks,
in many cases making application code that uses popular Rust libraries safer with no corresponding loss in
performance.
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1 INTRODUCTION
A decades-long struggle against memory safety vulnerabilities in critical systems has motivated
developers to use languages with compiler-enforced type-safety. Such type safety guarantees can
eliminate entire classes of memory-safety bugs by ensuring that data types are not accessed outside
of their allocated memory regions. For instance, language-enforced bounds checks could have
prevented OpenSSL’s [OpenSSL 2021] recent Heartbleed vulnerability [Durumeric et al. 2014] (in
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C code), which had access, via buffer overflow, to memory outside of its allocated region. While
type-safe languages help prevent security critical bugs, overheads from dynamic memory and
type checks have historically impeded their use in performance-sensitive contexts such as kernels,
databases, Web browsers, etc. This leaves developers in a bind when both safety and performance
are critical, and developers building performance sensitive applications have thus shied away from
type-safety. But recent languages specifically target these applications and provide type-safety
with performance comparable to C [Apple 2021; Donovan and Kernighan 2015; Matsakis and Klock
2014].

Rust [Matsakis and Klock 2014] is one such language in which some safety checks are free due
to it’s strict type system that enforces most memory safety properties statically; others require
dynamic enforcement and may have a cost. Rust is particularly interesting because it prioritizes
memory safety, yet developers still circumvent some dynamic checks with Rust’s unsafe constructs.
A predominant example of this is accessing Rust slices through functions like get_unchecked
that avoid bounds checks to improve performance–we refer to this pattern as unchecked indexing
(Definition 2.2) and the checked counterpart as checking indexing (Definition 2.1). In general,
unchecked indexing is a long-standing problem, but even in the ecosystem of a language that
enforces bounds checks by default we find them manually elided in as many as 10% of the 500 most
downloaded libraries, many of which are used in applications that prioritize safety.

We perform a study to evaluate the top Rust libraries that use unchecked indexing, finding that
76.4% of their benchmarks show little-to-no or even a negative performance impact from unchecked
indexing in a given context, suggesting that manually trading safety for performance in this way is
rarely effective. Not only do developers incorrectly identify the most expensive checks to elide, but
they fundamentally cannot correctly do so for every possible context. We find that simply using an
older compiler version can change the checked indexing overhead of a sample application from
7.7% to 6.5%. Using a different architecture changes this overhead to 2.5%, and using a different
application workload changes it again to 4.4%. Furthermore, an overhead of 4.4% may be acceptable
in a safety-critical application but not in a performance-sensitive one, so a blanket approach that
converts all unchecked indexing back into checked indexing is not necessarily realistic. We also
investigate how unchecked indexing from libraries permeates into a set of 27 Rust applications,
finding that on average there are 86 times more unchecked indexing operations in application
dependencies than in the applications themselves.

Based on these findings, we suggest an approach that, rather than treating unchecked indexing
as a requirement, treats unchecked indexing as a suggestion for an indexing operation that may
improve end-to-end performance were it unchecked. This way, applications need not be tied to
the trade-off decisions made by library developers, but library developer insights about which
unchecked indexing operations may be profitable are still taken into consideration.
We implement this approach as NADER, a prototype tool that provides a systematic way for

Rust developers to improve safety subject to their chosen performance cost threshold. NADER aims
to automatically restore as many bounds checks as possible within this threshold in the context of
the target compiler and hardware. This tool works well for a variety of applications: it shows that
no unchecked indexing is used in two benchmarks, it converts all unchecked indexing to checked
indexing in 6 benchmarks, and it finds better trade-off options for two benchmarks.

Contributions. We summarize our contributions as:

• A study that shows that developers do not and cannot correctly identify the most expensive
bounds checks to elide–especially problematic for libraries that are used in a variety of
contexts;

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 103. Publication date: October 2021.



Safer at Any Speed: Automatic Context-Aware Safety Enhancement for Rust 103:3

• The NADER approach that treats unchecked indexing as a suggestion and automatically
restores safety up to a user-specified performance overhead threshold;

• A prototype implementing the NADER approach that finds better safety-performance
trade-offs for a wide range of benchmarks.

Availability. Our research artifact is available at https://doi.org/10.5281/zenodo.5484436.

2 MOTIVATING STUDY
While run-time safety checks increase the safety of a program, they often come at a cost and

are not integrated by default in systems programming languages like C and C++. Many tools
designed for C and C++ strive to provide low-cost checks in hopes of motivating programmers to
use themmore frequently. Among these tools is ASAP [Wagner et al. 2015], a tool that automatically
introduces safety checks into C++ code up to a specified overhead threshold. ASAP leverages the
insight that most safety-critical checks occur in cold code and discovers that many checks can be
introduced with low performance overheads.
Unlike C/C++, Rust provides a different solution: it adds such checks by default while also

giving users the option of an unsafe escape hatch for when they are too limiting. While Rust
compiler developers try to reduce the performance overhead of these checks through optimizations,
expensive ones can still slip through. The perception that there aremany such checks has motivated
developers to take performance matters into their own hands and manually elide the checks they
deem expensive. Studies [Rust Language Team 2021] have found that programmers commonly use
unsafe Rust, and a survey [Evans et al. 2020] claims that 55% of participants use unsafe Rust for
better performance.
Note that unlike C++, which is inherently unsafe, unsafe code in Rust needs to be explicitly

introduced by programmers. Consequently, while work like ASAP uncovers an interesting insight-
–that inserting safety checks from an unsafe baseline can be cheap in most cases–the question
remains open for user-elided checks from a safe baseline. Primarily, it is not clear whether run-time
checks elided with unsafe Rust are justified by their performance. An often overlooked factor is the
role of context: we suspect that run-time checks elided with unsafe Rust may be justified in some
contexts but not in others, as context can change their overhead. Finally, we seek to understand
how this manual elision of run-time checks permeates the Rust ecosystem.

2.1 Study Setup
We perform a study to investigate these factors with a focus on bounds checks. Bounds checking is
a longstanding problem in the community [Bodík et al. 2000; Gupta 1993; Kolte and Wolfe 1995;
Patterson 1995; Qian et al. 2002; Rugina and Rinard 1999], and unchecked indexing is often credited
as a frequent pattern of sacrificing safety for performance in Rust. One study [Qin et al. 2020] cites
performance as a reason for 22% of the unsafe code they studied, of which unchecked indexing and
ptr::copy_nonoverlapping() are significant contributors. Another study notes that unchecked
indexing "plays a significant role for some performance-oriented crates" [Astrauskas et al. 2020],
where a crate is analogous to a Rust library. This motive is additionally demonstrated by code
comments like "it would be great if the bounds checks here could be optimized out. . . this improves
performance by about 7%" in the hc128.rs file of the rand_hc-0.2.0 library, and "this function
skips the bounds check in optimized builds. Using it in the hottest two call sites gives a 15%. . . speed
boost" in Firefox’s modules/libpref/parser/src/lib.rs. Moreover, manually elided checks are
easy to syntactically isolate in Rust.

Definition 2.1 (Checked Indexing). A checked index dereferences an offset into an array-like
structure (e.g., slice, array, and str in Rust) subject to a successful check that the offset is within
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the bounds of the structure (e.g. the length of the slice). In Rust, checked indexing is exposed with
the get or get_mut methods as well as with the index operator (a[i]), as shown in copy_checked
below:

fn copy_checked(src: &[u8], dst: &mut [u8]) {
for i in 0..src.len() {
dst[i] = src[i]; // or, dst.get_mut(i).unwrap() = src.get(i).unwrap();

}
}

Definition 2.2 (Unchecked Indexing). An unchecked index dereferences an offset into an array-
like structurewithout performing a bounds check. Unchecked indexing is exposed in Rust through
the get_unchecked or get_unchecked_mut methods, like so:

fn copy_unchecked(src: &[u8], dst: &mut [u8]) {
unsafe {
for i in 0..src.len() {
*dst.get_unchecked_mut(i) = *src.get_unchecked(i);

}
}

}

Given this information, we formulate the goals of our study into three concrete questions:
Q1: In a given context, is using unchecked indexing justified by performance?
Q2: Are decisions to use unchecked indexing appropriate for all contexts?
Q3: How prevalent is unchecked indexing in the Rust ecosystem?

2.2 Results and Analysis
Q1: In a given context, is using unchecked indexing justified by performance?
What makes the cost of bounds check particularly hard to measure is that the effect of a single
bounds check depends not only on the direct dynamic overhead of a couple of added instructions
but also on the compiler passes and optimizations it may prevent. This complicated interplay can
cause a single bounds check to affect program performance significantly in both intuitive and
unintuitive ways. Within a narrow scope, a checked index could cause a performance hit that
becomes unimportant within a larger scope with different performance bottlenecks. The opposite
can also occur, where a checked index can block vectorization or identification of idioms such as
memcpy.
Consider copy_checked and copy_unchecked, two functions that both implement equivalent

memcpy semantics: the former using checked indexing and the latter using unchecked indexing.
When called by the exact same code, copy_unchecked runs 7x faster. copy_checked compiles
into a canonical loop with an automatically-inserted bounds check guarding each iteration, while
copy_unchecked turns into a single memcpy call in the generated LLVM IR. Notably, the performance
overhead of the checked version is not the result of executing a bounds check in every iteration
of the loop. Instead, it stems from the additional complexity in the loop’s control flow, which
complicates the code pattern and ultimately inhibits vectorization.
Given the complexity of assigning an overhead to every bounds check, we experimentally

measure the overhead of checked indexing on a handful of libraries where bounds checks are
already manually elided. We show the results as a histogram in Figure 1. Each of the 203 benchmarks
belongs to one of 7 libraries in the top 250 most downloaded Rust libraries on crates.io that a)
contains unchecked indexing and b) has a benchmark suite that compiles with rustc-1.52.0. To

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 103. Publication date: October 2021.



Safer at Any Speed: Automatic Context-Aware Safety Enhancement for Rust 103:5

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1 1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52

1.54

1.56

1.58

1.6

0

5

10

15

20

25

30

35

40

45

50

55

60

65

Histogram of all speedups

Speedup

N
um

be
r 

of
 B

en
ch

m
ar

ks

Fig. 1. A histogram of benchmarks (y-axis) exhibiting a particular performance impact (x-axis) when all
unchecked indexing is converted to checked indexing. Consists of 203 benchmarks over 7 Rust libraries. 131
(64.5%) benchmarks show less than a 1% change in performance, 48 (23.6%) are more than 1% slower with
checked indexing, and 24 (11.8%) are more than 1% faster with checked indexing. All but two benchmarks
(one in the 0.96-0.98 Speedup bucket and another in the 0.94-0.96 Speedup bucket) have non-overlapping 95%
confidence intervals.

measure the overhead of checked indexing, we compare the performance of each unmodified library
with a version of the library where all unchecked indexing is converted to checking indexing. We
observe a large variance in the overheads of checked indexing: 23.6% of benchmarks do report
significant performance hits from checked indexing, but 64.5% report little-to-no impact and,
surprisingly, 11.8% report improved performance! All but two benchmarks (one in the 0.96-0.98
Speedup bucket and another in the 0.94-0.96 Speedup bucket) are statistically significant at the 95%
confidence level. Ultimately, while unchecked indexing can improve performance, most
of the time it does not.
The counter-intuitive performance improvements from checked indexing could be caused by

affected heuristics within the compiler. For example, introducing a checked indexing operation–and
thus increasing the instruction count of a function–can potentially prevent the inlining of the
function if it barely satisfies the inlining heuristic without the added check. If this inlining decision
ends up being harmful (by increasing i-cache or i-TLB misses), the added check could improve
performance. Adding a check could also affect code layout, where the alignment of branch targets
is critical for performance. An additional check could prevent misalignment or reduce padding.
An explanation for the large variance of our results could be that the benchmarks may not be

exercising the indexing operations at all, or may only be exercising them a bit, such that the overhead
is not apparent. In the glam-0.14.0 library for example, the mat3_transform_point2 benchmark
shows a 21% slowdown from checked indexing, whereas in the mat3_inverse benchmark shows a
6.4% speedup from checked indexing. This indicates that, while glam-0.14.0 as a whole contains
unchecked indexing, different benchmarks in the library will naturally exercise those operations to
different extents and may also be susceptible to different downstream interactions that will affect
the ultimate overhead.

Q2: Are decisions to use unchecked indexing appropriate for all contexts?
The overall context of a library consists of the entire environment in which it runs. This in-
cludes the application that uses the library, the compiler, the operating system, the underly-
ing ISA, and the microarchitecture. To illustrate the impact of context on performance, we use
brotli-decompressor [Dropbox 2020], a drop-in replacement for the C implementation of the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 103. Publication date: October 2021.



103:6 Natalie Popescu, Ziyang Xu, Sotiris Apostolakis, David I. August, and Amit Levy

Table 1. The overhead of checked indexing in four different contexts. For each context, the overhead represents
the relative slowdown of a converted brotli-decompressor compared to the unconverted original. The
baseline context–the same as the deployment context used in Section 5–is compiled with rustc-1.52.0, run
on a machine with two Intel Xeon E5-2697 v3 processors, and profiled using brotli-decompressor’s data at
compression level 5. Each variation only changes one part of this context.

Deployment Baseline Different Compiler Different Architecture Different Workload
Context (rustc 1.46.0) (Apple M1) (Compression Level=11)
Overhead 7.7% 6.5% 2.5% 4.4%

Brotli generic-purpose lossless compression algorithm [Alakuijala et al. 2019]. Table 1 shows the
overhead of checked indexing (i.e. the performance difference between converted and unconverted
versions of brotli-decompressor) in four different contexts. The overhead of checked indexing
in the baseline context is 7.7%, but using an older version of rustc changes this overhead to 6.5%.
Similarly, running on a different architecture or with a different compression level reduces the
overhead of checked indexing more by varying amounts. Note that the overhead percentages shown
are not all comparing against a single baseline. For example, the absolute performance of both
converted and unconverted versions with the newer rustc-1.52.0 is improved over the older
rustc-1.46.0, but the relative overhead is larger with rustc-1.52.0. One possible explanation
is that a newly-introduced optimization is applicable to just the unchecked version, thus widening
the gap.

Table 2. The simplified context of a generic application. The overhead of a checked indexing operation can be
affected by factors in every layer of the system software stack (some of which are mentioned under Examples),
so predicting it for every context is simply not possible.

Layer Examples
Applications safety-performance goals; full context of dependencies
Libraries semantics of safe/unsafe code; performance bottlenecks
Compiler vectorization; phase-ordering problem

Operating System exception handling; memory management
Instruction Set Architecture vector extensions; branch instructions

Microarchitecture branch prediction; memory management

Furthermore, operating system and microarchitectural implementation details for performance-
critical components, like memory management and caching, add to the already-present complexity
of reasoning about performance. A summary of all the system layers that would need to be fully
understood in order to accurately predict performance for every context is shown in Table 2.
In cases where safety checks lead to frequent exception handling, the implementation of such
procedures will also affect performance. Additionally, common intuitions about how additional
branches impact performance–that they largely become no-ops–are still occasionally erroneous,
e.g., due to the mitigation of speculative execution side channels revealed by Meltdown [Lipp
et al. 2018] and Spectre [Kocher et al. 2019]. Therefore, the measured overhead of checked
indexing in one context cannot be used to predict its overhead in another context.

Q3: How prevalent is unchecked indexing in the Rust ecosystem?
We find that 10% of the 500 most downloaded Rust libraries on crates.io contain at least one
instance of unchecked indexing. We also find that, across a set of 27 applications which we selected
according to criteria described in Section 5, there tends to be on average 86 times more unchecked
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indexing in application dependencies than in the application itself, as seen in Table 4. While
reasoning about and auditing every unchecked indexing operation in one’s own application may
be feasible, doing this for every dependency can overwhelm even large engineering teams. This
calls for a more systematic way of identifying and defending against all of the potential unchecked
indexing that an application may use.

Insight: Developers cannot always correctly identify the most expensive checks to elide.
Based on our results from Figure 1, the naive solution would be to always use checked indexing and
leave it at that. Unfortunately, this is not a realistic option for two reasons. The first is that, even
if we started this instant, many libraries still contain counterproductive unchecked indexing that
would end up in dependencies everywhere. The second reason is that expensive checks may not
be acceptable for some performance-sensitive applications. A solution is needed that can convert
all unchecked indexing in an application and its dependencies, but that is also flexible enough
to leave the expensive checks out of applications that cannot tolerate them. Furthermore, the
solution should work in a per-benchmark, per-context fashion. We build a prototype of such a tool
that, given a benchmark and an overhead threshold, returns the best trade-off between safety and
performance.

3 THE NADER APPROACH
Library developers introduce unchecked indexing into their code when they believe it is correct to
do so and they intuit that it might improve performance. As shown in Figure 2, the status quo forces
application developers to accept the choices that library developers make. They do not have a simple
way of discovering the unchecked indexing hidden in all dependent libraries nor to make them
checked if they wish to improve safety. The NADER approach makes the application developers
aware of hidden unchecked indexing in all dependent libraries, tests the performance impact of
existing unchecked indexing in a specific deployment context, and automatically improves safety by
converting unchecked indexing to checked indexing subject to a performance overhead threshold.

Figure 2 compares the workflow of library and application development and deployment under
NADERwith the status quo. The NADER approach does not impose any changes to the workflow of
library developers because library developers do not have adequate information to make informed
decisions about unchecked indexing. This also allows the tool to be more compatible with existing
libraries. In the application developer’s workflow, NADER first discovers which of the application’s
dependencies use unchecked indexing. This information, not readily available to developers today,
enables them to make more informed decisions about whether to incorporate libraries, audit them,
choose between alternative libraries, or implement the library functionality themselves. We refer to
unchecked indexing in the application itself as direct unchecked indexing and that in dependencies as
indirect unchecked indexing. Before deploying an application, developers use the NADER toolchain
to determine whether direct or indirect unchecked indexing has an impact on performance in
their particular context. Finally, NADER transforms unchecked indexing to checked indexing until
performance degrades to a developer-provided threshold using developer-provided benchmarks to
complete the context.

Concretely, NADER enables the following improvements to an application developer’s workflow:

Awareness: Make application developers aware of unchecked indexing. When application
developers are aware of the unchecked indexing used in a dependent library, they can make an
informed decision to trust it, audit its code, or choose an alternative option.

Safety: Improve application safety up to a performance overhead threshold. NADER con-
verts direct and indirect unchecked indexing to checked alternatives. Application developers supply
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Fig. 2. Comparison of the status quo and the NADER approach. NADER makes application developers aware
of unchecked indexing and automatically optimizes the safety-performance trade-off in the deployment
context to generate binaries with minimal unchecked indexing.

test inputs and a performance overhead threshold to NADER, which then automatically converts
as much unchecked indexing as possible without exceeding the overhead threshold.
Context: Optimize safety-performance trade-offs for an application and deployment con-
text. NADER explores the safety-performance trade-off automatically, considering the entire com-
puting stack in Table 2 with no additional developer effort.
With the NADER approach, application developers can fulfill different safety-performance

objectives by adjusting the overhead threshold. In all cases, the NADER approach improves safety
with minimal or no overhead.
Performance-Driven. If users are looking for the best possible performance, they can set the
overhead threshold to zero and force it to maintain optimal performance while introducing as many
bounds checks as possible. As shown in Section 5, a significant portion of bounds checks can be
reintroduced to improve safety without sacrificing any performance.
Safety-Driven. If the application is sensitive to safety but not as much to performance, the
application developer can choose to enforce maximum safety by specifying an infinite overhead
threshold, essentially making all unchecked indexing checked.
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Balance Between Performance and Safety. Users in-between the two extremes can specify an
ideal performance threshold, automatically optimize performance by identifying a set of highly prof-
itable unchecked indexing operations (relative to the threshold) and improve safety by converting
all the others to their checked counterparts.

4 NADER TOOLCHAIN
NADER helps application developers regain control over unchecked indexing in their applications
and dependent libraries. It consists of three components: NADER-Analyzer, NADER-Converter,
and NADER-Explorer. We begin our discussion of NADER by describing the interactions between
components, also summarized in Figure 3, and follow with details of the components themselves.

4.1 NADER Overview
NADER takes as input an application with a benchmark (as source code) and an overhead threshold;
it returns to the developer an application binary that is optimized for their safety-performance
needs. NADER assumes that the given benchmark is representative of the workload the developer
wants to optimize the application for.

First, NADER-Analyzer uncovers all direct and indirect unchecked indexing compiled by the
benchmark, revealing the level of compromised safety the application is exposed to. As an opti-
mization, if no unchecked indexing is seen in this step, then no unchecked indexing will end up in
the binary, and NADER returns the application binary as is.

Unchecked
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Result

Diff
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Recommandation: 
Use Converted 

Binary For Safety

Application Binary With
Minimal Unchecked 

Indexing

Rust
Compiler

Rust
Compiler

Binary
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Compare Binaries
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Fig. 3. NADER identifies all potentially-used unchecked indexing operation and determines if any of them
improve performance. If some do, then NADER identifies them and, subject to the overhead threshold,
converts the cheapest ones to their checked counterparts. If no unchecked indexing improves performance,
NADER makes them all checked.

If NADER-Analyzer finds any unchecked indexing during compilation, NADER-Converter:
i) converts all found unchecked indexing to checked indexing, ii) compiles both the original,
unmodified source code and the converted source code, and iii) compares the resulting binaries. If
the two binaries are identical, NADER knows that the original application is, in practice, no less
safe than the converted application; as another optimization, NADER exits early in these cases.
Binaries that differ could indicate the presence of unchecked indexing or simply be the result of
unrelated non-determinism. At this point NADER switches to empirical methods.

In its third step, NADER executes the two versions of the compiled benchmark. The difference in
performance between these two binaries effectively measures the overhead of checked indexing. If
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the overhead of checked indexing is not significant in the given context, there is no need to make a
safety-performance trade-off, and NADER returns the fully-converted application binary.

Finally, if there is a significant performance difference, NADER-Explorer automatically explores
the safety-performance trade-off space to identify the most expensive checks. It converts as many
unchecked indexing uses as possible to their checked counterparts while keeping the perfor-
mance overhead below the specified threshold, and returns the maximally-converted binary to the
application developer.

4.2 NADER Analyzer: Uncovering Direct and Indirect Unchecked Indexing
NADER-Analyzer first compiles the developer-provided benchmark using a custom rustc, aug-
mented with an MIR pass that identifies all of the unchecked indexing calls and returns a list
of their corresponding source code locations. In particular, as function calls are fully resolved at
the MIR-level, the MIR pass identifies calls to just the Rust core and library’s implementation of
unchecked indexing, which ensures that NADER-Converter preserves the correct semantics.
Then, NADER-Analyzer presents a report to the developer that, among with the source code

locations of each unchecked indexing operation found, includes: the number of direct unchecked
indexing (in the application itself), the number of indirect unchecked indexing (in the dependencies),
and the number of libraries that the application depends on that contain unchecked indexing.
NADER-Analyzer ignores dependencies marked dev in the application manifest (a file named
Cargo.toml by Rust convention) because these libraries are not available when compiling the
application binary. 1

4.3 NADER Converter: Converting Unchecked Indexing to Checked Indexing
NADER relies on the Rust core library’s implementation of checked gets for correctness and trusts
other unsafe code within the core and standard libraries. In addition to core and standard libraries
that ship with Rust, the Rust ecosystem relies heavily on open-source, third party libraries that also
contain unsafe code, but are less-vetted and, therefore, less trustworthy than the standard library.
NADER acts on this set of unsafe code.
To convert unchecked indexing to checked indexing, we study the semantics of all pub unsafe

fn get_unchecked<I>(&self,index: I) functions in Rust’s core and standard libraries and its safe
alternative get (also get_unchecked_mut and its safe alternative get_mut). As documented in the
Rust slice library, "calling this method. . .with an out-of-bounds index is undefined behavior even
if the resulting reference is not used", meaning the programmer should ensure that the index is
within bounds. The get alternative does the bounds checking before indexing into the slice and
returns None if the bounds check fails or Some(...) if the bounds check succeeds. Otherwise, all
pre- and post-conditions of calling these two methods are the same.

To implement NADER-Converter, we replace all the calls of get_unchecked with its safe alterna-
tive get and chain an unwrap() after it. unwrap() will panic if the returned Option is None, which
simulates the effect of the out-of-bounds panic from intrinsic indexing, s[i].

4.4 NADER Explorer: Automatically Exploring the Safety-Performance Trade-Off
At the center of our proposed approach is NADER-Explorer, shown in Figure 5, a tool that can auto-
matically optimize for the safety-performance trade-off while taking into account the deployment
context. In order to optimize for the performance-safety trade-off, both performance and safety
need to be concretely defined.

1dev dependencies are common in many language ecosystems and allow developers to leverage the language’s package
manager to install tools useful for testing and development, such as a unit test runner or code formatting tools.
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Definition 4.1 (Performance Metric). We define our performance metric as the average throughput
of the application with its typical workloads in the deployment context.

Safety, on the other hand, is less straightforward to define. When only using Safe Rust, we can
rely on the Rust compiler to provide safety guarantees [Matsakis and Klock 2014]. However, if even
one line of unsafe code is introduced, the compiler can no longer guarantee the safety of related
code. The premise of our safety metric is that every line in an unsafe block needs to be manually
audited to ensure it does not violate the type- or memory-safety assumptions made by the compiler
elsewhere. In order to minimize the auditing burden, we want minimize the number of lines that
need to be audited.

Definition 4.2 (Safety Metric). We define our safety metric as the number of lines that do not need
to be audited, reflected by the amount of source code that is free of unchecked indexing (where
the unchecked indexing is eventually introduced into the application binary). ASAP [Wagner et al.
2015] uses a similar metric.

Given our concrete definitions of both safety and performance, our goal is to minimize the
amount of unchecked indexing (i.e., maximize safety) without exceeding the acceptable overhead
threshold. We formalize our goal as the following optimization problem:

Definition 4.3 (Optimization Problem). Given an initial set of unchecked indexing operations𝑀
within an application A and a user-specified performance threshold T, find a set 𝑁 , such that:

(1) 𝑁 ⊆ 𝑀 ;
(2) 𝜙 (𝑁 ) ≤ T (acceptable performance);
(3) ∀K.𝐾 ⊆ 𝑀 ∧ 𝜙 (𝐾) ≤ 𝑇 =⇒ |𝑁 | ≤ |𝐾 | (maximum safety)

where 𝜙 (𝑆) is the execution time of A modified such that every previously-unchecked index 𝑎 ∈ 𝑆
is now protected with a bounds check.

Problem 4.3 is essentially a search problem, where each search point corresponds to a trial run
consisting of recompilation and execution, taking seconds to minutes to complete in practice. If the
count of unchecked slice accesses is 20, and each search point takes one second, the exhaustive
search will take more than 11 days to finish. Thus, an exhaustive approach is not acceptable and
we must rely on some heuristic to expedite the search.

By measuring the impact of individual bounds checks and ranking them in ascending order
based on their performance impact, we can adopt a greedy search algorithm by adding the checks
back to the original source code one by one and measuring the overall performance after every
addition. The search stops when the overhead reaches the threshold. This brings the complexity of
the search problem from exponential down to linear. To effectively capture the impact of a single
bounds check, we rely on two observations.

Observation 4.1. Bounds checks mainly affect performance by introducing new instructions and
by potentially blocking compiler optimizations.

The introduced instructions will likely make a single indexing operations take more cycles
to finish, increasing the dynamic instruction count. If performance-oriented optimizations like
vectorization and inlining are blocked by the introduced instructions, the resulting code performs
much worse compared to the unchecked version.

Observation 4.2. If a bounds check is in cold code, its impact on performance is limited.

If a bounds check is rarely executed given a typical workload, the introduced instructions barely
change the total number of dynamic instructions. Similarly, blocking compiler optimizations on a
cold code path would not considerably affect performance.
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Fig. 4. Comparison of four different heuristics for ordering the bounds checks to reintroduce. No single
heuristic is strictly the best, but getting hotness information is O(1)–combining heuristics is likely to be most
effective. Each experiment runs ten times and we present the median time with the error bars depicting 95%
confidence intervals.

Based on these observations, we devise three heuristics to estimate the impact of an individual
bounds check: i)hotness of the unchecked indexing; ii) a one-checked slowdown, the performance
difference between the original source code (unsafe baseline) and making one unchecked indexing
operation in the unsafe baseline checked; and iii) a one-unchecked speedup, the performance
difference between converting all unchecked indexing to checked (safe baseline) and then making
one checked indexing operation unchecked again. For the hotness heuristic, we use the callgrind
profiler [Weidendorfer et al. 2004] to gather the statistics of the binary, and parse the generated
profile to pinpoint the instances of unchecked indexing. Remaining experiments are run natively.
The hotness heuristic relies on Observation 4.2 and the other two rely on Observation 4.1.

We perform a greedy search with these three heuristics to get the impact of a single bounds
check, and also include a random ordering for comparison. The detailed evaluation setup is the same
as in Section 5. The performance of each heuristic on one benchmark (brotli-decompressor) is
presented in Figure 4. All three heuristic variants perform better than the random ordering. The
variance of the results can be explained by several secondary performance effects: the introduced
instructions can change the binary layout, affecting the instruction cache performance, and the
introduced branch instructions may also affect the accuracy of the branch predictor. While these ef-
fects are secondary compared to those in Observation 4.1, their variance makes the final exploration
rather imprecise.

By using just the hotness heuristic,NADER-Explorer can limit unchecked indexing to a very small
set (23 instances out of the original 263 as shown in Figure 4) without sacrificing any performance.
To further optimize the search algorithm and minimize unchecked indexing, NADER-Explorer
iteratively converts the remaining unchecked indexing operations. In each round, it first measures
the performance impact of the one-checked slowdown heuristic on each unchecked indexing
operation, only converting those that fall below a small sensitivity threshold. If none fall below
this threshold, NADER-Explorer chooses the cheapest one to convert. The search stops when the
developer-specified overhead threshold is reached.
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Fig. 5. BC=Bounds Check. NADER-Explorer uses a combination of hotness and one-checked heuristics. It first
gets hotness with callgrind and uses a hotness-based greedy search to find the minimal set of unchecked
indexing that performs no worse than the unsafe baseline. Then, it iteratively gets one-checked slowdowns
and adds bounds checks to locations where converting from unchecked to checked indexing introduces little
or no overhead. NADER-Explorer continuously makes sure the overhead is below the threshold.

The hotness-based greedy search part of NADER-Explorer has a time complexity of 𝑂 (𝑛 ∗𝑇 ),
where n is the total number of unchecked indexing operations and T is the time needed to run
one benchmark. The iterative search part of NADER-Explorer has a time complexity of 𝑂 (𝑚2 ∗𝑇 )
where m is the number of leftover unchecked indexing operations after using the hotness-based
greedy search. In practice, n is on the order of tens to hundreds, T varies from 0.1s to 30s, and m is
on the order of tens. The total running time of NADER-Explorer varies from one minute to an hour.
Note that the two steps of the search are both embarrassingly parallel and NADER supports using
as many cores on a system as possible. The output of NADER-Explorer is a binary that minimizes
unchecked indexing without exceeding the performance overhead threshold.

4.5 Implementation Limitations
NADER does not support programs where libraries are distributed as pre-compiled binary objects
or LLVM IR. However, since Rust programs by default build libraries from source, we do not foresee
this as a major issue.
NADER does not currently handle macros gracefully. For applications in which macros funda-

mentally contribute to the code, such as brotli-decompressor, macros can be expanded man-
ually using cargo-expand (we do this for our evaluation of brotli-decompressor). However,
cargo-expand does not work correctly in all cases so, in general,NADERwill not convert unchecked
indexing operations that are called from macros.
NADER relies on end-to-end performance measurements for the last two steps. The current

implementation can only handle a single performance metric with one benchmark input for an
application. However, some applications are essentially bundles of multiple relatively independent
parts. For these applications, one single profile input is not enough to cover all functionalities. Due
to the relatively small performance difference between unchecked and checked indexing, NADER
is sensitive to performance variability and currently requires a controlled running environment.
Applications with inherently large variance are not good candidates. We plan to incorporate more
sophisticated profiling tools in the future to address these issues.
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5 EVALUATION
We evaluate NADER on a set of Rust applications that are safety- and/or performance-sensitive.
We initially assess the amount of unchecked indexing in the source code of all selected applications
and their dependencies (Section 5.2). Then, for the applications for which we can reliably measure
end-to-end performance, we demonstrate that NADER automatically makes all of them safer with
little performance overhead (Section 5.3).

Table 3. Summary of the wide variety of applications we evaluate NADER on.

Category Application Description
Data brotli-decompressor [Dropbox 2020] Decompressor of Brotli format
Processing COST [McSherry et al. 2015] Graph computation

tantivy [tantivy Team 2021] Search engine library
flatbuffers [Google 2021] Memory efficient serialization library
vector [Timber 2021] Tool for building observability pipelines

Languages RustPython [RustPython Team 2021] A Python interpreter
and Tools fnm [fnm Team 2021] Node.js version manager

wasmer [Wasmer 2021] WebAssembly Runtime
Cryptography BLAKE3 [BLAKE3 Team 2021] BLAKE3 hash function

rage [rage Team 2021] Encryption tool
Databases tikv [TiKV Project 2021] Distributed transactional key-value database

diesel [Diesel Team 2021] ORM and Query Builder
flux [InfluxData 2021] Scripting language for querying databases
sonic [Sonic Team 2021] Schema-less search backend
splinter [Kulkarni et al. 2018] Key-value store

The Web swc [swc Team 2021] Speedy web compiler
warp [Warp Team 2021] Web server framework
iron [Iron Team 2021] Web framework
zola [Zola Team 2021] Static site generator
servo [Servo Project Developers 2021] The Servo browser engine
gecko [Mozilla 2021] Firefox browser
tonic [Hyperium 2021] Native gRPC client & server implementation

Hypervisor firecracker [AWS 2021] MicroVMs for serverless computing
Graphics gfx [Rust Graphics Mages 2021] Vulkan-like GPU API
Networking boringtun [Cloudflare 2021] Implementation of WireGuard protocol

NetBricks [Panda et al. 2016] New network function framework
quiche [Cloudflare 2021] Implementation of QUIC and HTTP/3

5.1 Datasets and Experiment Setup
We select 27 popular Rust-based applications that satisfy the following criteria: they 1) are reasonably
well-maintained applications, 2) have benchmarks, 3) have dependencies, and 4) are plausibly
either security-sensitive, performance-sensitive, or both. While not an automated process, we
systematically select satisfying applications from sources that include official packages in Linux
distributions, popular GitHub repositories, and otherwise well-known applications written in Rust.
These applications typically depend on one or more of the libraries from Figure 1, but we do
not select applications based on this criteria; while the cost of checked indexing may be more
pronounced or visible in libraries, it is ultimately more important in the context of applications.
Table 3 lists all of the applications we selected, in what general computing category they lie, and a
concise description of each.
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Table 4. UI=Unchecked Indexing. Although application developers may not use unchecked indexing directly,
there are many cases where unchecked indexing is hidden in application dependencies. For the safety-
performance trade-off exploration, NADER requires a representative benchmark (provided by the application)
that can run locally and has stable performance: ✗ means that this requirement is not satisfied and ● means
that the application does not perform unchecked indexing at all so there is no need to continue.

Category Application #Direct #Indirect #Total #Deps w/ Continue with
UI UI Deps UI (%) NADER?

Data brotli-decompressor 263 0 5 0 (0%) ✓

Processing COST 6 3 22 1 (4.5%) ✓

tantivy 0 105 131 11 (8.4%) ✓

flatbuffers 0 0 11 0 (0%) ●

vector 0 449 988 37 (3.7%) ✗

Languages RustPython 1 157 293 17 (5.8%) ✓

and Tools fnm 0 168 252 9 (3.6%) ✗

wasmer 0 55 199 5 (2.5%) ✗

Cryptography BLAKE3 0 2 11 1 (9.1%) ✗

rage 0 117 207 8 (3.9%) ✓

Databases tikv 18 0 707 0 (0%) ✗

diesel 0 44 167 6 (3.6%) ✗

flux 0 43 53 4 (7.5%) ✗

sonic 0 9 103 3 (2.9%) ✗

splinter 3 604 311 20 (6.4%) ✗

The Web swc 7 74 202 11 (5.4%) ✓

warp 0 47 164 8 (4.9%) ✓

iron 0 54 172 9 (5.2%) ✓

zola 0 324 461 28 (6.1%) ✓

servo 1 331 1031 35 (3.4%) ✗

gecko 7 462 834 33 (4.0%) ✓

tonic 0 102 302 15 (5.0%) ✗

Hypervisor firecracker 0 31 66 1 (1.5%) ✗

Graphics gfx 0 136 241 16 (6.6%) ✗

Networking boringtun 0 0 46 0 (0%) ●

NetBricks 0 0 1 0 (0%) ●

quiche 0 6 13 1 (7.7%) ✗

We conduct all experiments with rustc-1.52.0 (nightly-2021-02-11) and compile using release
profiles. All performance experiments run directly–without using virtual machines or simulators–
on a machine with two Intel Xeon E5-2697 v3 processors running at 2.60GHz (turbo-boost disabled)
with 768GB of memory. The operating system is 64-bit Ubuntu 20.04 LTS. Note that we use
callgrind to gather hotness information (execution count per line) for NADER-Explorer, but it is
not a part of our performance measurements.

5.2 Ubiquitous Hidden Unchecked Indexing
In our selected set of 27 Rust applications, we uncover the extent to which unchecked indexing is
used. This helps us narrow down the set of applications to those that NADER can have an effect
on; an application with no unchecked indexing in its own code or in any of its dependencies would
not benefit from NADER. But it also helps us understand and establish a baseline for how much
unchecked indexing permeates popular Rust applications. Table 4 shows the results of this initial
exploration. These numbers are reported as a static source code count of the unchecked indexing
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Table 5. Perf Diff=Performance Difference, Bmark=Benchmark, Ex=Example, App=Application, UI=Unchecked
Indexing, D=Direct UI, I=Indirect UI (# deps), Elaps=Time Elapsed, Thrpt=Throughput, Cstm=Custom Mea-
surement (gecko provides an accumulated result value for multiple subtests). Most applications show no
performance difference when all indexing operations are checked. Two applications do not perform any
unchecked indexing by default, and two have at least one impactful checked indexing operation. Time elapsed
is measured by inserting a timer into the source code to avoid timing setup, and throughput (requests per
second) is measured using wrk [wrk Project 2021]. Getting gecko’s "#Hot UI" values times out.

Application Binary #Compiled Same Perf Perf #Hot Libs #Converted
UI Bin? Metric Diff UI Introducing UI

Hot UI
tantivy Bmark D: 0, Y - - - - -

I: 75 (11)
rage Bmark D: 0, Y - - - - -

I: 13 (5)
swc Bmark D: 7, N Elaps <1% 0 - All (60)

I: 53 (10)
warp Ex D: 0, N Thrpt <1% 2 httparse All (30)

I: 30 (8)
iron Ex D: 0, N Thrpt <1% 6 crossbeam-deque, All (22)

I: 22 (4) httparse
RustPython App D: 1, N Elaps <1% 1 siphasher All (89)

I: 88 (14)
zola App D: 0, N Elaps <1% 4 regex, All (246)

I: 246 (23) crossbeam-deque
gecko Bmark D: 6, N Cstm <1% - - All (265)

I: 259 (29)
COST Bmark D: 6, N Elaps 11% 2 (self) threshold-

I: 0 (0) dependent
brotli- App D: 261, N Elaps 7.7% 170 (self) threshold-

decompressor I: 0 (0) dependent

operations that may end up in the application binary. We observe that far more unchecked indexing
exists in application dependencies than in the applications themselves. On average, the ratio of
direct to indirect unchecked indexing is 1 to 86. This indicates that writing a safe application is much
more involved than just avoiding unchecked indexing in application code; not only do applications
typically depend on tens if not hundreds of libraries, but the libraries are also constantly being
updated and changed.

As mentioned in Section 4.5, NADER currently requires a representative benchmark provided by
the application, or a representativeworkload togetherwith the application binary. If the performance
measurement cannot be conducted in our experimental setup or there is no reasonably synthetic
profiling workload, we do not continue with exploring the safety-performance trade-off. Given this
limitation, we are left with ten applications out of the initial 27 for the next part of the evaluation,
as shown by the ✓in Table 4.

5.3 Automatically Optimizing the Safety-Performance Trade-off
For each application in Table 5, we run Steps 1-4 of the workflow presented in Section 4.1. In Step
1, NADER-Analyzer uncovers the MIR-level unchecked indexing that is compiled into each of the
10 applications. In Step 2, NADER-Converter modifies the source code to convert the uncovered
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unchecked indexing to checked indexing and compares the generated binary of the unmodified
application with that of the modified application. The "Same Bin?" column in Table 5 lists any
binaries that we find to be identical in our deployment context. The two versions of an application
may compile to the same binary for a couple reasons: 1) there was no unchecked indexing to begin
with; thus both versions of the application are identical, and Rust often generates the same binary,
or 2) the bounds checks from the converted indexing operations are elided during compilation,
producing identical results to the original unchecked indexing operations and hence the same
binary. If the binaries of the two application versions are identical, no performance or safety
difference is possible, so NADER returns the application binary as is. Applications tantivy and
rage fall under this category. We use the default-tokenize-alice benchmark for tantivy and
the decrypt benchmark for rage.

For the remaining applications, NADER explores the safety-performance trade-off by measuring
the difference in performance between the original and the modified versions of the application.
We use the benchmark bench_full for swc; run the hello example for warp; run the hello bi-
nary for iron; test the application RustPython with pystone input where the size is 30000; use
the perf_reftest talos benchmark for gecko; and use the pagerank binary with the hilbert
algorithm and LiveJournal input for COST. For brotli-decompressor, we perform several modi-
fications to convert it to a measurable benchmark. We manually expand the macros for inserting
unchecked indexing in 263 locations across 50 functions in the source code (using the cargo-expand
tool), which could otherwise be enabled by the unsafe feature. We also use a single compressed file
(60MB from an uncompressed 212MB tarball) generated from the complete Silesia corpus [Deorow-
icz 2003] with compression level 5. For warp and iron, two server applications, we use wrk [wrk
Project 2021] to measure the server throughput as requests per second, locally. For gecko we use
the accumulated result value that perf_reftest provides. For the rest, we use elapsed time as the
performance metric.
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Fig. 6. NADER-Explorer on COST. TH=Threshold, Rel Perf=Relative Performance, UI=Unchecked Indexing,
and CI=Checked Indexing. NADER automatically identifies 2 impactful bounds checks for the pagerank
binary with threshold 0-2% and the most impactful bounds checks with threshold 3-11%. Each experiment
runs ten times and we present the median time with the error bars showing 95% confidence intervals.

As shown in the “Perf Diff” column of Table 5, 6 out of the 8 remaining applications show
a performance difference below 1%. Given that this small performance difference is below the
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inherent performance variability of our experimental setup, NADER concludes that there is no
performance benefit and makes all unchecked indexing checked. To keep the developers informed,
NADER also conducts a profiling run with callgrind and reports the source code locations of the
unchecked indexing that gets executed during the profiling run. In the “#Hot UI” column of swc we
can see that all unchecked indexing is actually in cold code. For warp, iron, zola, and RustPython,
a few instances of unchecked indexing are executed.

After this step, two applications remain: COST and brotli-decompressor. For these two,NADER
proceeds with identifying themost impactful instances of unchecked indexing.NADER usesNADER-
Explorer to search for the smallest set of performance-critical unchecked indexing according to the
overhead threshold and converts all other cases.

Figure 6 shows the results of NADER on COST. The exploration process takes around 5 minutes
to execute in our experimental setup. Using the hotness-based greedy search, NADER-Explorer
constrains the search space to only two (out of nine) source locations corresponding to unchecked
indexing. Then, NADER-Explorer uses the one-checked slowdown iterative search, yielding a better
result than solely using the hotness heuristic. Note that the two source code locations are in the
same statement and are of the same hotness (same execution count). Thus, the hotness-based
greedy approach can not distinguish the precedence and sorts them arbitrarily. NADER instead
returns a deterministic result and reports that one bounds check affects the performance more than
the other.
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Fig. 7. NADER-Explorer on brotli-decompressor. TH=Threshold, Rel Perf=Relative Performance,
UI=Unchecked Indexing, and CI=Checked Indexing. NADER finds the minimal set of unchecked index-
ing given each threshold, and significantly outperforms the hotness-based greedy search. The random
heuristic results used in Figure 4 are included for comparison. Each experiment runs ten times and we present
the median time with the error bars showing 95% confidence intervals.

Figure 7 shows the results of NADER on brotli-decompressor. The exploration process takes
less than 30 minutes in our experimental setup. Using the hotness-based greedy search, NADER-
Explorer isolates a minimal set of 41 unchecked indexing operations that yield the same performance
as the unsafe baseline and then proceeds to convert them with the one-checked-based iterative
search. By setting -0.5%, -1%, -2%,. . . , -8% as the overhead threshold, NADER-Explorer yields a
minimal set of unchecked indexing for each threshold, balancing the safety-performance trade-off.
As shown in Figure 7, using only one unchecked index reduces the overhead from 7.7% to 4.4%,
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using two reduces overhead to 3.0%, and using nine reduces overhead to a mere 0.9%. NADER
generates the binary for the application developers to use immediately, as well as a detailed report
of the source code locations of the unchecked indexing left in the binary. With a drastically reduced
number of unchecked indexing (from 263 to only 9 with 0.9% performance overhead), the application
developers can manually audit these cases and then either verify that all these unsafe code locations
are indeed sound or rewrite the code to avoid them.

Note that all of these performance measurement results only apply to our evaluation context. Yet,
NADER is context-aware by construction and makes different trade-offs in different deployment
contexts. In addition, the application developer can specify different thresholds to express different
fine-grained safety-performance trade-off requirements in different deployment contexts. For
example, when deploying brotli-decompresor server-side–assuming the environment is more
contained behind layers of protection–one can be more performance-driven and specify a threshold
of 0% while still enjoying some safety improvement; whereas one might be more concerned about
safety client-side and prefer minimal unchecked indexing there.

6 RELATEDWORK
6.1 Safety-Performance Trade-offs

Trading Safety for Performance. Similar to Rust, other type-safe languages have some unsafe
features that are sometimes used for performance reasons. For example, OCaml has Obj.magic
(unsafely forces a type cast between any two OCaml types), while Haskell has loopholes (e.g.,
unsafeCoerce) that can bypass typing and module encapsulation [Terei et al. 2012].
Trading Performance for Safety. For inherently unsafe and performance-oriented languages
such as C, prior work has proposed sacrificing performance for safety. One prime example is
the introduction of bounds checks to enforce spatial safety of C with a sizeable (67%) runtime
overhead [Nagarakatte et al. 2009]. Others offer weaker security guarantees but with more efficient
checks [Akritidis et al. 2008; Akritidis et al. 2009; Dhurjati et al. 2006; Ruwase and Lam 2004].

6.2 Cost of Runtime Safety Checks

Safety Checks Blocking Optimizations. Apart from the local cost of executing safety checks,
prior work has identified the potential cascading effects of safety checks. Notably, Bodik et al. [Bodík
et al. 2000] underline that bounds checks in Java introduce exception points that cannot be bypassed
due to the precise exception semantics, and thus restrict the applicability of optimizations. We
make similar observations about the collateral damage of bounds checks in the context of Rust and
LLVM.
Mitigating the Cost of Safety Checks. To avoid the high cost of runtime safety checks, prior
work has employed various compiler-based techniques. For type-safe languages that protect the
code with bounds checks, prior work has proposed automatic, compile-time elimination of fully
redundant bounds checks using value-range analysis [Patterson 1995; Rugina and Rinard 1999] and
of partially redundant checks using iterative data-flow analysis [Gupta 1993; Kolte and Wolfe 1995].

In Java, most bounds check elimination tools work at runtime [Bodík et al. 2000; Qian et al. 2002;
Würthinger et al. 2007], whereas Rust relies on the LLVM compiler infrastructure to eliminate
the cost of bounds checking statically. LLVM supports elimination of redundant expressions and
hoisting loop invariant checks out of loops. But given the LLVM community’s focus on C/C++,
there is room for improvement in terms of mitigating the cost of bounds check patterns observed
in Rust code. NADER can guide compiler engineers towards mitigating the costs of more types of
bounds checks, enabling them to automatically make safe Rust code more performant.
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6.3 Performance Profiling
Software profilers identify where programs spend most of their time but without any other meaning-
ful feedback to programmers about where optimizations would matter the most. COZ [Curtsinger
and Berger 2018] introduced causal profiling to address this problem. Causal profiling calculates
the impact of potential optimizations by virtually speeding up parts of the code at runtime. COZ
would not help quantify the performance benefit of bounds check removal, as speeding up spe-
cific source code lines cannot capture the cascading effect of a bounds check removal within the
compiler. Similar to COZ, NADER performs empirical experiments, but contrary to COZ, NADER
fully evaluates the overheads of bounds checks by observing end-to-end application performance,
including the effects of bounds checks on compiler optimizations.

6.4 Automated Threshold-Based Trade-offs
Log20 [Zhao et al. 2017] automatically places log statements to satisfy a user-specified performance
threshold. Similarly, NADER can automatically perform threshold-based decision-making, but the
trade-off is between performance and safety.
ASAP [Wagner et al. 2015] automatically and selectively adds sanity checks to increase code

safety without exceeding the user-specified performance overhead. Similarly to NADER, ASAP
enables developers to selectively trade-offminimal performance overheads for maximal security. But
contrary to ASAP’s focus on the inherently insecure C and C++, NADER focuses on the inherently
safe Rust. Therefore, instead of adding safety checks in the context of an unsafe language, NADER
evaluates the performance impact of manually-removed checks in a safety-first language. Our
insight is not that some safety checks do not have performance impact (e.g., in cold code) but that
expert developers often do not realize the performance impact of the default safety checks and
unnecessarily harm the safety of their code.

6.5 Formal Methods for Proving Rust’s Safety
The RustBelt project [Jung et al. 2017] is very promising, and the world that it envisions – where
memory- and type-safety need not be sacrificed to achieve better performance – is superior to the
world NADER envisions – where the choice of points on this trade-off is ceded to the application
developer or user, rather than library developers operating with limited information. The proof
burden in RustBelt and other verification tools is likely too high to expect widespread adoption in
a vast ecosystem of libraries like Rust’s. RustBelt and NADER are complimentary: NADER can be
used to eliminate unnecessary uses of unchecked indexes, while RustBelt could be used to prove
safety in the remaining cases.

7 CONCLUSION
We conduct a study that indicates that using unchecked indexing is rarely justified by the perfor-
mance in a given context. Furthermore, different contexts can change the overhead of checked
indexing, so different checked-unchecked indexing choices may need to be made per context. We
also show that most unchecked indexing occurs in application dependencies, thus writing a safe
application requires constant supervision of all dependencies. In response to our findings, we
propose an approach that automatically frees application developers from these hard-coded and
often counterproductive trade-offs and optimizes applications according to end-user contexts. We
implement NADER, a tool that reintroduces checked indexing up to a user-specified overhead
threshold, and show that using NADER on several end-to-end Rust-based applications enables a
significant reduction of unchecked indexing without sacrificing performance. In the future, we
plan to extend NADER to automatically make safe code more performant, further reducing the need
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for unsafe code like unchecked indexing. We can use NADER to pinpoint a narrow set of the most
impactful bounds checks in a given application and direct static analysis techniques to elide these
high-impact bounds checks automatically. This would improve application performance without
sacrificing safety and would enable a relatively low compilation overhead due to the narrow target
scope. Future work will also involve exploring other types of performance-motivated unsafe code
in Rust.
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